If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+104x+336=0
a = 8; b = 104; c = +336;
Δ = b2-4ac
Δ = 1042-4·8·336
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(104)-8}{2*8}=\frac{-112}{16} =-7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(104)+8}{2*8}=\frac{-96}{16} =-6 $
| 3x+x+⅔x=28 | | 8x+26=3 | | 14x-17=4x+8 | | 10m2-20m-48=0 | | 2b+4=8 | | 2u+2+-32=-14 | | 0.9c+1.89=17.01 | | (-12)-a=19 | | 0.9+1.89r=17.01 | | 7r-5=6r+4 | | x+87=142 | | 3x/5+2=1 | | 5x/2+6/2=3-(4x+12) | | x-72=24 | | -1-8/3(¼x)=2 | | -4(n+4n)-2(2n+3n)=50 | | 2u=-35-3u | | 5x²-11=0 | | -9(e+18)=45 | | 5(x-2)=7+2x-4 | | F(2)=5x-3 | | -2(8x-7)+8x=4(x+7) | | 2(x)=200 | | 2x=4=-(-7x+6) | | (x+50)=100 | | G(2)=3x2-5x+1 | | 8+2r=-109 | | (5)2x+1=5 | | (x+50)=200 | | F(-3)=5x-3 | | Y=-0.3x+8 | | 2(x+50)=400 |